Chapter 2: Motion

Worksheet 1

1. Fill in the blanks.

(i) An object is said to be in a state of \qquad if its position changes with time with respect to its surroundings.
(ii) The flowing water in a river is also in a state of \qquad
(iii) Motion of the earth around the sun is a kind of \qquad motion.
(iv) The combination of rotatory and translatory motions is called \qquad motion.
(v) The actual length of a path covered by a moving object is called the \qquad travelled by it.

2. Write the type of motion in following cases.

(i) A boy running on a straight road
(ii) Vibrating string of a guitar
(iii) Movement of a swing
(iv) A merry-go-round
(v) Motion of a stone tied to a string

3. Define the following.

(i) Weight
(ii) Distance
(iii) Speed
(iv) Translatory motion
(v) Periodic motion

4. Answer the following questions.

(i) Define rest.
(ii) Name the motion which does not repeat itself at regular intervals of time.
(iii) What is the ratio of total distance travelled and total time taken for motion?
(iv) Is mass a scalar quantity?
(v) How is weight measured?

Chapter 2: Motion

Worksheet 2

1. True or False statements.

(i) If the motion of an object is along a straight path, it is said to be in rectilinear motion.
(ii) A roulette wheel is an example of rotatory motion.
(iii) The SI unit of speed is km / h.
(iv) Weight of an object on the moon's surface is only $\frac{1}{6}$ th of its weight on the earth's surface.
(v) Weight is a scalar quantity.

2. Match the columns.

Column A

(i) Rectilinear motion
(ii) Curvilinear motion
(iii) Circular motion
(iv) Oscillatory motion
(v) Vibratory motion

Column B

(a) Motion of the moon around the earth
(b) Motion of string of Veena
(c) Motion of a swing
(d) A freely falling stone
(e) A bullet fired from a gun

3. Answer the following questions.

(i) Why are rest and motion relative terms?
(ii) What is meant by random motion? Give its two examples.
(iii) Define average speed.
(iv) How is speed calculated?
(v) What is meant by uniform motion?

4. Solve the following numerical problems.

(i) A bus is running at a uniform speed of $80 \mathrm{~km} / \mathrm{h}$. Find its speed in m / s.
(ii) Find the time taken by a $500-\mathrm{m}$ long train to cross a $2000-\mathrm{m}$ long bridge at a speed of $20 \mathrm{~km} / \mathrm{h}$.

